Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Singular vector and singular subspace distribution for the matrix denoising model (1809.10476v2)

Published 27 Sep 2018 in math.ST, math.PR, and stat.TH

Abstract: In this paper, we study the matrix denosing model $Y=S+X$, where $S$ is a low-rank deterministic signal matrix and $X$ is a random noise matrix, and both are $M\times n$. In the scenario that $M$ and $n$ are comparably large and the signals are supercritical, we study the fluctuation of the outlier singular vectors of $Y$. More specifically, we derive the limiting distribution of angles between the principal singular vectors of $Y$ and their deterministic counterparts, the singular vectors of $S$. Further, we also derive the distribution of the distance between the subspace spanned by the principal singular vectors of $Y$ and that spanned by the singular vectors of $S$. It turns out that the limiting distributions depend on the structure of the singular vectors of $S$ and the distribution of $X$, and thus they are non-universal.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.