Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Perfect match: Improved cross-modal embeddings for audio-visual synchronisation (1809.08001v2)

Published 21 Sep 2018 in cs.CV, cs.SD, and eess.AS

Abstract: This paper proposes a new strategy for learning powerful cross-modal embeddings for audio-to-video synchronization. Here, we set up the problem as one of cross-modal retrieval, where the objective is to find the most relevant audio segment given a short video clip. The method builds on the recent advances in learning representations from cross-modal self-supervision. The main contributions of this paper are as follows: (1) we propose a new learning strategy where the embeddings are learnt via a multi-way matching problem, as opposed to a binary classification (matching or non-matching) problem as proposed by papers; (2) we demonstrate that performance of this method far exceeds the existing baselines on the synchronization task; (3) we use the learnt embeddings for visual speech recognition in self-supervision, and show that the performance matches the representations learnt end-to-end in a fully-supervised manner.

Citations (114)

Summary

We haven't generated a summary for this paper yet.