Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Bayesian Optimal Treatment Regimes for Dichotomous Outcomes using Observational Data (1809.06679v2)

Published 18 Sep 2018 in stat.ME and stat.ML

Abstract: Optimal treatment regimes (OTR) are individualised treatment assignment strategies that identify a medical treatment as optimal given all background information available on the individual. We discuss Bayes optimal treatment regimes estimated using a loss function defined on the bivariate distribution of dichotomous potential outcomes. The proposed approach allows considering more general objectives for the OTR than maximization of an expected outcome (e.g., survival probability) by taking into account, for example, unnecessary treatment burden. As a motivating example we consider the case of oropharynx cancer treatment where unnecessary burden due to chemotherapy is to be avoided while maximizing survival chances. Assuming ignorable treatment assignment we describe Bayesian inference about the OTR including a sensitivity analysis on the unobserved partial association of the potential outcomes. We evaluate the methodology by simulations that apply Bayesian parametric and more flexible non-parametric outcome models. The proposed OTR for oropharynx cancer reduces the frequency of the more burdensome chemotherapy assignment by approximately 75% without reducing the average survival probability. This regime thus offers a strong increase in expected quality of life of patients.

Citations (4)

Summary

We haven't generated a summary for this paper yet.