Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Massively Parallel Dynamic Programming on Trees (1809.03685v2)

Published 11 Sep 2018 in cs.DS

Abstract: Dynamic programming is a powerful technique that is, unfortunately, often inherently sequential. That is, there exists no unified method to parallelize algorithms that use dynamic programming. In this paper, we attempt to address this issue in the Massively Parallel Computations (MPC) model which is a popular abstraction of MapReduce-like paradigms. Our main result is an algorithmic framework to adapt a large family of dynamic programs defined over trees. We introduce two classes of graph problems that admit dynamic programming solutions on trees. We refer to them as "(polylog)-expressible" and "linear-expressible" problems. We show that both classes can be parallelized in $O(\log n)$ rounds using a sublinear number of machines and a sublinear memory per machine. To achieve this result, we introduce a series of techniques that can be plugged together. To illustrate the generality of our framework, we implement in $O(\log n)$ rounds of MPC, the dynamic programming solution of graph problems such as minimum bisection, $k$-spanning tree, maximum independent set, longest path, etc., when the input graph is a tree.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube