Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MultiNet: A Scalable Multilayer Network Embedding Framework (1805.10172v2)

Published 25 May 2018 in cs.SI and physics.soc-ph

Abstract: Representation learning of networks has witnessed significant progress in recent times. Such representations have been effectively used for classic network-based machine learning tasks like node classification, link prediction, and network alignment. However, very few methods focus on capturing representations for multiplex or multilayer networks, which are more accurate and detailed representations of complex networks. In this work, we propose Multi-Net a fast and scalable embedding technique for multiplex networks. Multi-Net, effectively maps nodes to a lower-dimensional space while preserving its neighborhood properties across all the layers. We utilize four random walk strategies in our unified network embedding model, thus making our approach more robust than existing state-of-the-art models. We demonstrate superior performance of Multi-Net on four real-world datasets from different domains. In particular, we highlight the uniqueness of Multi-Net by leveraging it for the complex task of network reconstruction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Arunkumar Bagavathi (18 papers)
  2. Siddharth Krishnan (12 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.