Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust and parallel scalable iterative solutions for large-scale finite cell analyses (1809.00828v2)

Published 4 Sep 2018 in math.NA, cs.DC, and cs.NA

Abstract: The finite cell method is a highly flexible discretization technique for numerical analysis on domains with complex geometries. By using a non-boundary conforming computational domain that can be easily meshed, automatized computations on a wide range of geometrical models can be performed. Application of the finite cell method, and other immersed methods, to large real-life and industrial problems is often limited due to the conditioning problems associated with these methods. These conditioning problems have caused researchers to resort to direct solution methods, which signifi- cantly limit the maximum size of solvable systems. Iterative solvers are better suited for large-scale computations than their direct counterparts due to their lower memory requirements and suitability for parallel computing. These benefits can, however, only be exploited when systems are properly conditioned. In this contribution we present an Additive-Schwarz type preconditioner that enables efficient and parallel scalable iterative solutions of large-scale multi-level hp-refined finite cell analyses.

Citations (48)

Summary

We haven't generated a summary for this paper yet.