Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preconditioning immersed isogeometric finite element methods with application to flow problems (1708.03519v1)

Published 11 Aug 2017 in cs.NA and cs.CE

Abstract: Immersed finite element methods generally suffer from conditioning problems when cut elements intersect the physical domain only on a small fraction of their volume. De Prenter et al. [Computer Methods in Applied Mechanics and Engineering, 316 (2017) pp. 297-327] present an analysis for symmetric positive definite (SPD) immersed problems, and for this class of problems an algebraic preconditioner is developed. In this contribution the conditioning analysis is extended to immersed finite element methods for systems that are not SPD and the preconditioning technique is generalized to a connectivity-based preconditioner inspired by Additive-Schwarz preconditioning. This Connectivity-based Additive-Schwarz (CbAS) preconditioner is applicable to problems that are not SPD and to mixed problems, such as the Stokes and Navier-Stokes equations. A detailed numerical investigation of the effectivity of the CbAS preconditioner to a range of flow problems is presented.

Citations (49)

Summary

We haven't generated a summary for this paper yet.