Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Automated Machine Learning Service Composition (1809.00486v1)

Published 3 Sep 2018 in cs.SE

Abstract: Automated service composition as the process of creating new software in an automated fashion has been studied in many different ways over the last decade. However, the impact of automated service composition has been rather small as its utility in real-world applications has not been demonstrated so far. This paper presents \tool, an algorithm for automated service composition applied to the area of machine learning. Empirically, we show that \tool is competitive and sometimes beats algorithms that solve the same task but not benefit of the advantages of a service model. Thereby, we present a real-world example that demonstrates the utility of automated service composition in contrast to non-service oriented solutions in the same area.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube