Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolutionary Multitasking for Semantic Web Service Composition (1902.06370v1)

Published 18 Feb 2019 in cs.AI

Abstract: Web services are basic functions of a software system to support the concept of service-oriented architecture. They are often composed together to provide added values, known as web service composition. Researchers often employ Evolutionary Computation techniques to efficiently construct composite services with near-optimized functional quality (i.e., Quality of Semantic Matchmaking) or non-functional quality (i.e., Quality of Service) or both due to the complexity of this problem. With a significant increase in service composition requests, many composition requests have similar input and output requirements but may vary due to different preferences from different user segments. This problem is often treated as a multi-objective service composition so as to cope with different preferences from different user segments simultaneously. Without taking a multi-objective approach that gives rise to a solution selection challenge, we perceive multiple similar service composition requests as jointly forming an evolutionary multi-tasking problem in this work. We propose an effective permutation-based evolutionary multi-tasking approach that can simultaneously generate a set of solutions, with one for each service request. We also introduce a neighborhood structure over multiple tasks to allow newly evolved solutions to be evaluated on related tasks. Our proposed method can perform better at the cost of only a fraction of time, compared to one state-of-art single-tasking EC-based method. We also found that the use of the proper neighborhood structure can enhance the effectiveness of our approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chen Wang (600 papers)
  2. Hui Ma (87 papers)
  3. Gang Chen (592 papers)
  4. Sven Hartmann (5 papers)
Citations (18)

Summary

We haven't generated a summary for this paper yet.