Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Optimal shrinkage covariance matrix estimation under random sampling from elliptical distributions (1808.10188v1)

Published 30 Aug 2018 in stat.ME

Abstract: This paper considers the problem of estimating a high-dimensional (HD) covariance matrix when the sample size is smaller, or not much larger, than the dimensionality of the data, which could potentially be very large. We develop a regularized sample covariance matrix (RSCM) estimator which can be applied in commonly occurring sparse data problems. The proposed RSCM estimator is based on estimators of the unknown optimal (oracle) shrinkage parameters that yield the minimum mean squared error (MMSE) between the RSCM and the true covariance matrix when the data is sampled from an unspecified elliptically symmetric distribution. We propose two variants of the RSCM estimator which differ in the approach in which they estimate the underlying sphericity parameter involved in the theoretical optimal shrinkage parameter. The performance of the proposed RSCM estimators are evaluated with numerical simulation studies. In particular when the sample sizes are low, the proposed RSCM estimators often show a significant improvement over the conventional RSCM estimator by Ledoit and Wolf (2004). We further evaluate the performance of the proposed estimators in classification and portfolio optimization problems with real data wherein the proposed methods are able to outperform the benchmark methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube