Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ParsRec: Meta-Learning Recommendations for Bibliographic Reference Parsing (1808.09036v1)

Published 27 Aug 2018 in cs.IR

Abstract: Bibliographic reference parsers extract metadata (e.g. author names, title, year) from bibliographic reference strings. No reference parser consistently gives the best results in every scenario. For instance, one tool may be best in extracting titles, and another tool in extracting author names. In this paper, we address the problem of reference parsing from a recommender-systems perspective. We propose ParsRec, a meta-learning approach that recommends the potentially best parser(s) for a given reference string. We evaluate ParsRec on 105k references from chemistry. We propose two approaches to meta-learning recommendations. The first approach learns the best parser for an entire reference string. The second approach learns the best parser for each field of a reference string. The second approach achieved a 2.6% increase in F1 (0.909 vs. 0.886, p < 0.001) over the best single parser (GROBID), reducing the false positive rate by 20.2% (0.075 vs. 0.094), and the false negative rate by 18.9% (0.107 vs. 0.132).

Citations (2)

Summary

We haven't generated a summary for this paper yet.