Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discriminative out-of-distribution detection for semantic segmentation (1808.07703v2)

Published 23 Aug 2018 in cs.CV

Abstract: Most classification and segmentation datasets assume a closed-world scenario in which predictions are expressed as distribution over a predetermined set of visual classes. However, such assumption implies unavoidable and often unnoticeable failures in presence of out-of-distribution (OOD) input. These failures are bound to happen in most real-life applications since current visual ontologies are far from being comprehensive. We propose to address this issue by discriminative detection of OOD pixels in input data. Different from recent approaches, we avoid to bring any decisions by only observing the training dataset of the primary model trained to solve the desired computer vision task. Instead, we train a dedicated OOD model which discriminates the primary training set from a much larger "background" dataset which approximates the variety of the visual world. We perform our experiments on high resolution natural images in a dense prediction setup. We use several road driving datasets as our training distribution, while we approximate the background distribution with the ILSVRC dataset. We evaluate our approach on WildDash test, which is currently the only public test dataset that includes out-of-distribution images. The obtained results show that the proposed approach succeeds to identify out-of-distribution pixels while outperforming previous work by a wide margin.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Petra Bevandić (17 papers)
  2. Ivan Krešo (7 papers)
  3. Marin Oršić (12 papers)
  4. Siniša Šegvić (38 papers)
Citations (75)