Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 455 tok/s Pro
Kimi K2 194 tok/s Pro
2000 character limit reached

A combinatorial approach to noninvolutive set-theoretic solutions of the Yang-Baxter equation (1808.03938v3)

Published 12 Aug 2018 in math.QA

Abstract: We study noninvolutive set-theoretic solutions $(X,r)$ of the Yang-Baxter equations in terms of the properties of the canonically associated algebraic objects-the braided monoid $S(X,r)$, the quadratic Yang-Baxter algebra $A= A(\textbf{k}, X, r)$ over a field $\textbf{k}$ and its Koszul dual, $A{!}$. More generally, we continue our systematic study of nondegenerate quadratic sets $(X,r)$ and the associated algebraic objects. Next we investigate the class of (noninvolutive) square-free solutions $(X,r)$. It contains the special class of self distributive solutions (quandles). We make a detailed characterization in terms of various algebraic and combinatorial properties each of which shows the contrast between involutive and noninvolutive square-free solutions. We introduce and study a class of finite square-free braided sets $(X,r)$ of order $n\geq 3$ which satisfy "the minimality condition \textbf{M}", that is $\dim_{\textbf{k}} A_2 =2n-1$. Examples are some simple racks of prime order $p$. Finally, we discuss general extensions of solutions and introduce the notion of "a generalized strong twisted union of braided sets". We prove that if $(Z,r)$ is a non-degenerate 2-cancellative braided set splitting as $Z = X\natural{\ast} Y$, then its braided monoid $S_Z$ is a generalized strong twisted union $S_Z= S_X\natural{\ast} S_Y$ of the braided monoids $S_X$ and $S_Y$. Moreover, if $(Z,r)$ is injective then its braided group $G_Z=G(Z,r)$ also splits as $G_Z= G_X\natural{\ast} G_Y$ of the associated braided groups of $X$ and $Y$. We propose a construction of a generalized strong twisted union $Z = X\natural{\ast} Y$ of braided sets $(X,r_X)$, and $(Y, r_Y)$, where the map $r$ has high, explicitly prescribed order.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com