Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Modelling Non-Markovian Quantum Processes with Recurrent Neural Networks (1808.01374v2)

Published 3 Aug 2018 in quant-ph

Abstract: Quantum systems interacting with an unknown environment are notoriously difficult to model, especially in presence of non-Markovian and non-perturbative effects. Here we introduce a neural network based approach, which has the mathematical simplicity of the Gorini-Kossakowski-Sudarshan-Lindblad master equation, but is able to model non-Markovian effects in different regimes. This is achieved by using recurrent neural networks for defining Lindblad operators that can keep track of memory effects. Building upon this framework, we also introduce a neural network architecture that is able to reproduce the entire quantum evolution, given an initial state. As an application we study how to train these models for quantum process tomography, showing that recurrent neural networks are accurate over different times and regimes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.