Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hard-Aware Point-to-Set Deep Metric for Person Re-identification (1807.11206v1)

Published 30 Jul 2018 in cs.CV

Abstract: Person re-identification (re-ID) is a highly challenging task due to large variations of pose, viewpoint, illumination, and occlusion. Deep metric learning provides a satisfactory solution to person re-ID by training a deep network under supervision of metric loss, e.g., triplet loss. However, the performance of deep metric learning is greatly limited by traditional sampling methods. To solve this problem, we propose a Hard-Aware Point-to-Set (HAP2S) loss with a soft hard-mining scheme. Based on the point-to-set triplet loss framework, the HAP2S loss adaptively assigns greater weights to harder samples. Several advantageous properties are observed when compared with other state-of-the-art loss functions: 1) Accuracy: HAP2S loss consistently achieves higher re-ID accuracies than other alternatives on three large-scale benchmark datasets; 2) Robustness: HAP2S loss is more robust to outliers than other losses; 3) Flexibility: HAP2S loss does not rely on a specific weight function, i.e., different instantiations of HAP2S loss are equally effective. 4) Generality: In addition to person re-ID, we apply the proposed method to generic deep metric learning benchmarks including CUB-200-2011 and Cars196, and also achieve state-of-the-art results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Rui Yu (76 papers)
  2. Zhiyong Dou (3 papers)
  3. Song Bai (87 papers)
  4. Zhaoxiang Zhang (162 papers)
  5. Yongchao Xu (43 papers)
  6. Xiang Bai (222 papers)
Citations (137)

Summary

We haven't generated a summary for this paper yet.