Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification (1710.00478v3)

Published 2 Oct 2017 in cs.CV

Abstract: Person re-identification (ReID) is an important task in computer vision. Recently, deep learning with a metric learning loss has become a common framework for ReID. In this paper, we also propose a new metric learning loss with hard sample mining called margin smaple mining loss (MSML) which can achieve better accuracy compared with other metric learning losses, such as triplet loss. In experi- ments, our proposed methods outperforms most of the state-of-the-art algorithms on Market1501, MARS, CUHK03 and CUHK-SYSU.

Citations (145)

Summary

We haven't generated a summary for this paper yet.