Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

On the semiclassical Laplacian with magnetic field having self-intersecting zero set (1807.09028v1)

Published 24 Jul 2018 in math.AP, math-ph, math.MP, and math.NA

Abstract: This paper is devoted to the spectral analysis of the Neumann realization of the 2D magnetic Laplacian with semiclassical parameter h > 0 in the case when the magnetic field vanishes along a smooth curve which crosses itself inside a bounded domain. We investigate the behavior of its eigenpairs in the limit h $\rightarrow$ 0. We show that each crossing point acts as a potential well, generating a new decay scale of h 3/2 for the lowest eigenvalues, as well as exponential concentration for eigenvectors around the set of crossing points. These properties are consequences of the nature of associated model problems in R 2 for which the zero set of the magnetic field is the union of two straight lines. In this paper we also analyze the spectrum of model problems when the angle between the two straight lines tends to 0.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.