Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stable log surfaces, admissible covers, and canonical curves of genus 4 (1807.08413v2)

Published 23 Jul 2018 in math.AG

Abstract: We explicitly describe the KSBA/Hacking compactification of a moduli space of log surfaces of Picard rank 2. The space parametrizes log pairs $(S, D)$ where $S$ is a degeneration of $\mathbb{P}1 \times \mathbb{P}1$ and $D \subset S$ is a degeneration of a curve of class $(3,3)$. We prove that the compactified moduli space is a smooth Deligne--Mumford stack with 4 boundary components. We relate it to the moduli space of genus 4 curves; we show that it compactifies the blow-up of the hyperelliptic locus. We also relate it to a compactification of the Hurwitz space of triple coverings of $\mathbb{P}1$ by genus 4 curves.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.