Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Audio-to-Score Alignment using Transposition-invariant Features (1807.07278v1)

Published 19 Jul 2018 in cs.SD, cs.MM, and eess.AS

Abstract: Audio-to-score alignment is an important pre-processing step for in-depth analysis of classical music. In this paper, we apply novel transposition-invariant audio features to this task. These low-dimensional features represent local pitch intervals and are learned in an unsupervised fashion by a gated autoencoder. Our results show that the proposed features are indeed fully transposition-invariant and enable accurate alignments between transposed scores and performances. Furthermore, they can even outperform widely used features for audio-to-score alignment on `untransposed data', and thus are a viable and more flexible alternative to well-established features for music alignment and matching.

Citations (16)

Summary

We haven't generated a summary for this paper yet.