Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Motion Invariance in Visual Environments (1807.06450v1)

Published 14 Jul 2018 in cs.CV

Abstract: The puzzle of computer vision might find new challenging solutions when we realize that most successful methods are working at image level, which is remarkably more difficult than processing directly visual streams, just as happens in nature. In this paper, we claim that their processing naturally leads to formulate the motion invariance principle, which enables the construction of a new theory of visual learning based on convolutional features. The theory addresses a number of intriguing questions that arise in natural vision, and offers a well-posed computational scheme for the discovery of convolutional filters over the retina. They are driven by the Euler-Lagrange differential equations derived from the principle of least cognitive action, that parallels laws of mechanics. Unlike traditional convolutional networks, which need massive supervision, the proposed theory offers a truly new scenario in which feature learning takes place by unsupervised processing of video signals. An experimental report of the theory is presented where we show that features extracted under motion invariance yield an improvement that can be assessed by measuring information-based indexes.

Citations (4)

Summary

We haven't generated a summary for this paper yet.