Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

A unifying theory of exactness of linear penalty functions II: parametric penalty functions (1807.05570v1)

Published 15 Jul 2018 in math.OC

Abstract: In this article we develop a general theory of exact parametric penalty functions for constrained optimization problems. The main advantage of the method of parametric penalty functions is the fact that a parametric penalty function can be both smooth and exact unlike the standard (i.e. non-parametric) exact penalty functions that are always nonsmooth. We obtain several necessary and/or sufficient conditions for the exactness of parametric penalty functions, and for the zero duality gap property to hold true for these functions. We also prove some convergence results for the method of parametric penalty functions, and derive necessary and sufficient conditions for a parametric penalty function to not have any stationary points outside the set of feasible points of the constrained optimization problem under consideration. In the second part of the paper, we apply the general theory of exact parametric penalty functions to a class of parametric penalty functions introduced by Huyer and Neumaier, and to smoothing approximations of nonsmooth exact penalty functions. The general approach adopted in this article allowed us to unify and significantly sharpen many existing results on parametric penalty functions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)