Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Bayesian Inference Analysis of Unmodelled Gravitational-Wave Transients (1807.01939v3)

Published 5 Jul 2018 in gr-qc

Abstract: We report the results of an in-depth analysis of the parameter estimation capabilities of BayesWave, an algorithm for the reconstruction of gravitational-wave signals without reference to a specific signal model. Using binary black hole signals, we compare BayesWave's performance to the theoretical best achievable performance in three key areas: sky localisation accuracy, signal/noise discrimination, and waveform reconstruction accuracy. BayesWave is most effective for signals that have very compact time-frequency representations. For binaries, where the signal time-frequency volume decreases with mass, we find that BayesWave's performance reaches or approaches theoretical optimal limits for system masses above approximately 50 M_sun. For such systems BayesWave is able to localise the source on the sky as well as templated Bayesian analyses that rely on a precise signal model, and it is better than timing-only triangulation in all cases. We also show that the discrimination of signals against glitches and noise closely follow analytical predictions, and that only a small fraction of signals are discarded as glitches at a false alarm rate of 1/100 y. Finally, the match between BayesWave- reconstructed signals and injected signals is broadly consistent with first-principles estimates of the maximum possible accuracy, peaking at about 0.95 for high mass systems and decreasing for lower-mass systems. These results demonstrate the potential of unmodelled signal reconstruction techniques for gravitational-wave astronomy.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.