Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

State-aware Anti-drift Robust Correlation Tracking (1806.10759v1)

Published 28 Jun 2018 in cs.CV

Abstract: Correlation filter (CF) based trackers have aroused increasing attentions in visual tracking field due to the superior performance on several datasets while maintaining high running speed. For each frame, an ideal filter is trained in order to discriminate the target from its surrounding background. Considering that the target always undergoes external and internal interference during tracking procedure, the trained filter should take consideration of not only the external distractions but also the target appearance variation synchronously. To this end, we present a State-aware Anti-drift Tracker (SAT) in this paper, which jointly model the discrimination and reliability information in filter learning. Specifically, global context patches are incorporated into filter training stage to better distinguish the target from backgrounds. Meanwhile, a color-based reliable mask is learned to encourage the filter to focus on more reliable regions suitable for tracking. We show that the proposed optimization problem could be efficiently solved using Alternative Direction Method of Multipliers and fully carried out in Fourier domain. Extensive experiments are conducted on OTB-100 datasets to compare the SAT tracker (both hand-crafted feature and CNN feature) with other relevant state-of-the-art methods. Both quantitative and qualitative evaluations further demonstrate the effectiveness and robustness of the proposed work.

Citations (46)

Summary

We haven't generated a summary for this paper yet.