Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimization Matrix Factorization Recommendation Algorithm Based on Rating Centrality (1806.07678v1)

Published 20 Jun 2018 in cs.IR

Abstract: Matrix factorization (MF) is extensively used to mine the user preference from explicit ratings in recommender systems. However, the reliability of explicit ratings is not always consistent, because many factors may affect the user's final evaluation on an item, including commercial advertising and a friend's recommendation. Therefore, mining the reliable ratings of user is critical to further improve the performance of the recommender system. In this work, we analyze the deviation degree of each rating in overall rating distribution of user and item, and propose the notion of user-based rating centrality and item-based rating centrality, respectively. Moreover, based on the rating centrality, we measure the reliability of each user rating and provide an optimized matrix factorization recommendation algorithm. Experimental results on two popular recommendation datasets reveal that our method gets better performance compared with other matrix factorization recommendation algorithms, especially on sparse datasets.

Citations (16)

Summary

We haven't generated a summary for this paper yet.