Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Uncertain fate of fair sampling in quantum annealing (1806.06081v3)

Published 15 Jun 2018 in quant-ph and cond-mat.dis-nn

Abstract: Recently, it was demonstrated both theoretically and experimentally on the D-Wave quantum annealer that transverse-field quantum annealing does not find all ground states with equal probability. In particular, it was proposed that more complex driver Hamiltonians beyond transverse fields might mitigate this shortcoming. Here, we investigate the mechanisms of (un)fair sampling in quantum annealing. While higher-order terms can improve the sampling for selected small problems, we present multiple counterexamples where driver Hamiltonians that go beyond transverse fields do not remove the sampling bias. Using perturbation theory we explain why this is the case. In addition, we present large-scale quantum Monte Carlo simulations for spin glasses with known degeneracy in two space dimensions and demonstrate that the fair-sampling performance of quadratic driver terms is comparable to standard transverse-field drivers. Our results suggest that quantum annealing machines are not well suited for sampling applications, unless post-processing techniques to improve the sampling are applied.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube