Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Adaptation with Interpretable Disentangled Representations for Distant Conversational Speech Recognition (1806.04872v1)

Published 13 Jun 2018 in cs.CL, cs.LG, cs.NE, cs.SD, and eess.AS

Abstract: The current trend in automatic speech recognition is to leverage large amounts of labeled data to train supervised neural network models. Unfortunately, obtaining data for a wide range of domains to train robust models can be costly. However, it is relatively inexpensive to collect large amounts of unlabeled data from domains that we want the models to generalize to. In this paper, we propose a novel unsupervised adaptation method that learns to synthesize labeled data for the target domain from unlabeled in-domain data and labeled out-of-domain data. We first learn without supervision an interpretable latent representation of speech that encodes linguistic and nuisance factors (e.g., speaker and channel) using different latent variables. To transform a labeled out-of-domain utterance without altering its transcript, we transform the latent nuisance variables while maintaining the linguistic variables. To demonstrate our approach, we focus on a channel mismatch setting, where the domain of interest is distant conversational speech, and labels are only available for close-talking speech. Our proposed method is evaluated on the AMI dataset, outperforming all baselines and bridging the gap between unadapted and in-domain models by over 77% without using any parallel data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Wei-Ning Hsu (76 papers)
  2. Hao Tang (379 papers)
  3. James Glass (173 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.