Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Natural Gradient Langevin Dynamics in Practice (1806.02855v1)

Published 7 Jun 2018 in cs.LG, cs.AI, cs.NE, and stat.ML

Abstract: Stochastic Gradient Langevin Dynamics (SGLD) is a sampling scheme for Bayesian modeling adapted to large datasets and models. SGLD relies on the injection of Gaussian Noise at each step of a Stochastic Gradient Descent (SGD) update. In this scheme, every component in the noise vector is independent and has the same scale, whereas the parameters we seek to estimate exhibit strong variations in scale and significant correlation structures, leading to poor convergence and mixing times. We compare different preconditioning approaches to the normalization of the noise vector and benchmark these approaches on the following criteria: 1) mixing times of the multivariate parameter vector, 2) regularizing effect on small dataset where it is easy to overfit, 3) covariate shift detection and 4) resistance to adversarial examples.

Citations (8)

Summary

We haven't generated a summary for this paper yet.