Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A scalable matrix-free spectral element approach for unsteady PDE constrained optimization using PETSc/TAO (1806.01422v2)

Published 4 Jun 2018 in math.OC

Abstract: We provide a new approach for the efficient matrix-free application of the transpose of the Jacobian for the spectral element method for the adjoint based solution of partial differential equation (PDE) constrained optimization. This results in optimizations of nonlinear PDEs using explicit integrators where the integration of the adjoint problem is not more expensive than the forward simulation. Solving PDE constrained optimization problems entails combining expertise from multiple areas, including simulation, computation of derivatives, and optimization. The Portable, Extensible Toolkit for Scientific computation (PETSc) together with its companion package, the Toolkit for Advanced Optimization (TAO), is an integrated numerical software library that contains an algorithmic/software stack for solving linear systems, nonlinear systems, ordinary differential equations, differential algebraic equations, and large-scale optimization problems and, as such, is an ideal tool for performing PDE-constrained optimization. This paper describes an efficient approach in which the software stack provided by PETSc/TAO can be used for large-scale nonlinear time-dependent problems. While time integration can involve a range of high-order methods, both implicit and explicit. The PDE-constrained optimization algorithm used is gradient-based and seamlessly integrated with the simulation of the physical problem.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube