Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Approximately quantized thermal Hall effect of chiral liquids coupled to phonons (1805.11587v2)

Published 29 May 2018 in cond-mat.str-el

Abstract: The recent observation of a half-integer quantized thermal Hall effect in $\alpha$-RuCl$3$ is interpreted as a unique signature of a chiral spin liquid with a Majorana edge mode. A similar quantized thermal Hall effect is expected in chiral topological superconductors. The unavoidable presence of gapless acoustic phonons, however, implies that, in contrast to the quantized electrical conductivity, the thermal Hall conductivity $\kappa_xy$ is never exactly quantized in real materials. Here, we investigate how phonons affect the quantization of the thermal conductivity focusing on the edge theory. As an example we consider a Kitaev spin liquid gapped by an external magnetic field coupled to acoustic phonons. The coupling to phonons destroys the ballistic thermal transport of the edge mode completely, as energy can leak into the bulk, thus drastically modifying the edge-picture of the thermal Hall effect. Nevertheless, the thermal Hall conductivity remains approximately quantized and we argue, that the coupling to phonons to the edge mode is a necessary condition for the observation of the quantized thermal Hall effect. The strength of this edge coupling does, however, not affect the conductivity. We argue that for sufficiently clean systems the leading correction to the quantized thermal Hall effect, $\Delta \kappa{xy}/T \sim \text{sign(B)} \, T2$, arises from a intrinsic anomalous Hall effect of the acoustic phonons due to Berry phases imprinted by the chiral (spin) liquid in the bulk. This correction depends on the sign but not the amplitude of the external magnetic field.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.