Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Linearized wave turbulence convergence results for three-wave systems (1805.11269v3)

Published 29 May 2018 in math.AP, math-ph, math.MP, and math.PR

Abstract: We consider stochastic and deterministic three-wave semi-linear systems with bounded and almost continuous set of frequencies. Such systems can be obtained by considering nonlinear lattice dynamics or truncated partial differential equations on large periodic domains. We assume that the nonlinearity is small and that the noise is small or void and acting only in the angles of the Fourier modes (random phase forcing). We consider random initial data and assume that these systems possess natural invariant distributions corresponding to some Rayleigh-Jeans stationary solutions of the wave kinetic equation appearing in wave turbulence theory. We consider random initial modes drawn with probability laws that are perturbations of theses invariant distributions. In the stochastic case, we prove that in the asymptotic limit (small nonlinearity, continuous set of frequency and small noise), the renormalized fluctuations of the amplitudes of the Fourier modes converge in a weak sense towards the solution of the linearized wave kinetic equation around these Rayleigh-Jeans spectra. Moreover, we show that in absence of noise, the deterministic equation with the same random initial condition satisfies a generic Birkhoff reduction in a probabilistic sense, without kinetic description at least in some regime of parameters.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)