Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Macroscopic Portfolio Model: From Rational Agents to Bounded Rationality (1805.11036v2)

Published 25 May 2018 in q-fin.PM, math.DS, q-fin.CP, and q-fin.TR

Abstract: We introduce a microscopic model of interacting financial agents, where each agent is characterized by two portfolios; money invested in bonds and money invested in stocks. Furthermore, each agent is faced with an optimization problem in order to determine the optimal asset allocation. The stock price evolution is driven by the aggregated investment decision of all agents. In fact, we are faced with a differential game since all agents aim to invest optimal. Mathematically such a problem is ill posed and we introduce the concept of Nash equilibrium solutions to ensure the existence of a solution. Especially, we denote an agent who solves this Nash equilibrium exactly a rational agent. As next step we use model predictive control to approximate the control problem. This enables us to derive a precise mathematical characterization of the degree of rationality of a financial agent. This is a novel concept in portfolio optimization and can be regarded as a general approach. In a second step we consider the case of a fully myopic agent, where we can solve the optimal investment decision of investors analytically. We select the running cost to be the expected missed revenue of an agent and we assume quadratic transaction costs. More precisely the expected revenues are determined by a combination of a fundamentalist or chartist strategy. Then we derive the mean field limit of the microscopic model in order to obtain a macroscopic portfolio model. The novelty in comparison to existent macroeconomic models in literature is that our model is derived from microeconomic dynamics. The resulting portfolio model is a three dimensional ODE system which enables us to derive analytical results. Simulations reveal, that our model is able to replicate the most prominent features of financial markets, namely booms and crashes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.