Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Data-driven polynomial chaos expansions: a weighted least-square approximation (1805.10893v1)

Published 28 May 2018 in math.NA

Abstract: In this work, we combine the idea of data-driven polynomial chaos expansions with the weighted least-square approach to solve uncertainty quantification (UQ) problems. The idea of data-driven polynomial chaos is to use statistical moments of the input random variables to develop an arbitrary polynomial chaos expansion, and then use such data-driven bases to perform UQ computations. Here we adopt the bases construction procedure by following \cite{Ahlfeld_2016SAMBA}, where the bases are computed by using matrix operations on the Hankel matrix of moments. Different from previous works, in the postprocessing part, we propose a weighted least-squares approach to solve UQ problems. This approach includes a sampling strategy and a least-squares solver. The main features of our approach are two folds: On one hand, our sampling strategy is independent of the random input. More precisely, we propose to sampling with the equilibrium measure, and this measure is also independent of the data-driven bases. Thus, this procedure can be done in prior (or in a off-line manner). On the other hand, we propose to solve a Christoffel function weighted least-square problem, and this strategy is quasi-linearly stable -- the required number of PDE solvers depends linearly (up to a logarithmic factor) on the number of (data-driven) bases. This new approach is thus promising in dealing with a class of problems with epistemic uncertainties. Several numerical tests are presented to show the effectiveness of our approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.