Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Language Vagueness in Privacy Policies using Deep Neural Networks (1805.10393v1)

Published 25 May 2018 in cs.CL

Abstract: Website privacy policies are too long to read and difficult to understand. The over-sophisticated language makes privacy notices to be less effective than they should be. People become even less willing to share their personal information when they perceive the privacy policy as vague. This paper focuses on decoding vagueness from a natural language processing perspective. While thoroughly identifying the vague terms and their linguistic scope remains an elusive challenge, in this work we seek to learn vector representations of words in privacy policies using deep neural networks. The vector representations are fed to an interactive visualization tool (LSTMVis) to test on their ability to discover syntactically and semantically related vague terms. The approach holds promise for modeling and understanding language vagueness.

Citations (29)

Summary

We haven't generated a summary for this paper yet.