Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy at Scale: Introducing the PrivaSeer Corpus of Web Privacy Policies (2004.11131v2)

Published 23 Apr 2020 in cs.IR and cs.CR

Abstract: Organisations disclose their privacy practices by posting privacy policies on their website. Even though users often care about their digital privacy, they often don't read privacy policies since they require a significant investment in time and effort. Although natural language processing can help in privacy policy understanding, there has been a lack of large scale privacy policy corpora that could be used to analyse, understand, and simplify privacy policies. Thus, we create PrivaSeer, a corpus of over one million English language website privacy policies, which is significantly larger than any previously available corpus. We design a corpus creation pipeline which consists of crawling the web followed by filtering documents using language detection, document classification, duplicate and near-duplication removal, and content extraction. We investigate the composition of the corpus and show results from readability tests, document similarity, keyphrase extraction, and explored the corpus through topic modeling.

Citations (47)

Summary

We haven't generated a summary for this paper yet.