Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cumulative subtraction games (1805.09368v3)

Published 23 May 2018 in math.CO and cs.DM

Abstract: We study zero-sum games, a variant of the classical combinatorial Subtraction games (studied for example in the monumental work "Winning Ways", by Berlekamp, Conway and Guy), called Cumulative Subtraction (CS). Two players alternate in moving, and get points for taking pebbles out of a joint pile. We prove that the outcome in optimal play (game value) of a CS with a finite number of possible actions is eventually periodic, with period $2s$, where $s$ is the size of the largest available action. This settles a conjecture by Stewart in his Ph.D. thesis (2011). Specifically, we find a quadratic bound, in the size of $s$, on when the outcome function must have become periodic. In case of two possible actions, we give an explicit description of optimal play. We generalize the periodicity result to games with a so-called reward function, where at each stage of game, the change of `score' does not necessarily equal the number of pebbles you collect.

Citations (4)

Summary

We haven't generated a summary for this paper yet.