Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partition games (1803.02621v3)

Published 7 Mar 2018 in math.CO and cs.DM

Abstract: We introduce CUT, the class of 2-player partition games. These are NIM type games, played on a finite number of heaps of beans. The rules are given by a set of positive integers, which specifies the number of allowed splits a player can perform on a single heap. In normal play, the player with the last move wins, and the famous Sprague-Grundy theory provides a solution. We prove that several rulesets have a periodic or an arithmetic periodic Sprague-Grundy sequence (i.e. they can be partitioned into a finite number of arithmetic progressions of the same common difference). This is achieved directly for some infinite classes of games, and moreover we develop a computational testing condition, demonstrated to solve a variety of additional games. Similar results have previously appeared for various classes of games of take-and-break, for example octal and hexadecimal; see e.g. Winning Ways by Berlekamp, Conway and Guy (1982). In this context, our contribution consists of a systematic study of the subclass `break-without-take'.

Citations (3)

Summary

We haven't generated a summary for this paper yet.