Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Quantum walk on a toral phase space (1805.04673v2)

Published 12 May 2018 in quant-ph

Abstract: A quantum walk on a toral phase space involving translations in position and its conjugate momentum is studied in the simple context of a coined walker in discrete time. The resultant walk, with a family of coins parametrized by an angle is such that its spectrum is exactly solvable with eigenangles for odd parity lattices being equally spaced, a feature that is remarkably independent of the coin. The eigenvectors are naturally specified in terms the $q-$Pochhammer symbol, but can also be written in terms of elementary functions, and their entanglement can be analytically found. While the phase space walker shares many features in common with the well-studied case of a coined walker in discrete time and space, such as ballistic growth of the walker position, it also presents novel features such as exact periodicity, and formation of cat-states in phase-space. Participation ratio (PR) a measure of delocalization in walker space is studied in the context of both kinds of quantum walks; while the classical PR increases as $\sqrt{t}$ there is a time interval during which the quantum walks display a power-law growth $\sim t{0.825}$. Studying the evolution of coherent states in phase space under the walk enables us to identify an Ehrenfest time after which the coin-walker entanglement saturates.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.