Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Accurate and High-Speed Spiking Neuromorphic Systems with Data Quantization-Aware Deep Networks (1805.03054v3)

Published 8 May 2018 in cs.CV

Abstract: Deep Neural Networks (DNNs) have gained immense success in cognitive applications and greatly pushed today's artificial intelligence forward. The biggest challenge in executing DNNs is their extremely data-extensive computations. The computing efficiency in speed and energy is constrained when traditional computing platforms are employed in such computational hungry executions. Spiking neuromorphic computing (SNC) has been widely investigated in deep networks implementation own to their high efficiency in computation and communication. However, weights and signals of DNNs are required to be quantized when deploying the DNNs on the SNC, which results in unacceptable accuracy loss. %However, the system accuracy is limited by quantizing data directly in deep networks deployment. Previous works mainly focus on weights discretize while inter-layer signals are mainly neglected. In this work, we propose to represent DNNs with fixed integer inter-layer signals and fixed-point weights while holding good accuracy. We implement the proposed DNNs on the memristor-based SNC system as a deployment example. With 4-bit data representation, our results show that the accuracy loss can be controlled within 0.02% (2.3%) on MNIST (CIFAR-10). Compared with the 8-bit dynamic fixed-point DNNs, our system can achieve more than 9.8x speedup, 89.1% energy saving, and 30% area saving.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Fuqiang Liu (10 papers)
  2. C. Liu (546 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.