Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum cuts in edge-colored graphs (1805.00858v1)

Published 2 May 2018 in cs.DS, cs.CG, cs.DM, and math.CO

Abstract: The input of the Maximum Colored Cut problem consists of a graph $G=(V,E)$ with an edge-coloring $c:E\to {1,2,3,\ldots , p}$ and a positive integer $k$, and the question is whether $G$ has a nontrivial edge cut using at least $k$ colors. The Colorful Cut problem has the same input but asks for a nontrivial edge cut using all $p$ colors. Unlike what happens for the classical Maximum Cut problem, we prove that both problems are NP-complete even on complete, planar, or bounded treewidth graphs. Furthermore, we prove that Colorful Cut is NP-complete even when each color class induces a clique of size at most 3, but is trivially solvable when each color induces a $K_2$. On the positive side, we prove that Maximum Colored Cut is fixed-parameter tractable when parameterized by either $k$ or $p$, by constructing a cubic kernel in both cases.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Luerbio Faria (5 papers)
  2. Sulamita Klein (7 papers)
  3. Ignasi Sau (71 papers)
  4. Uéverton S. Souza (27 papers)
  5. Rubens Sucupira (2 papers)
Citations (4)