Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Complexity of (List) Edge-Coloring Reconfiguration Problem (1609.00109v1)

Published 1 Sep 2016 in cs.DM and cs.CC

Abstract: Let $G$ be a graph such that each edge has its list of available colors, and assume that each list is a subset of the common set consisting of $k$ colors. Suppose that we are given two list edge-colorings $f_0$ and $f_r$ of $G$, and asked whether there exists a sequence of list edge-colorings of $G$ between $f_0$ and $f_r$ such that each list edge-coloring can be obtained from the previous one by changing a color assignment of exactly one edge. This problem is known to be PSPACE-complete for every integer $k \ge 6$ and planar graphs of maximum degree three, but any complexity hardness was unknown for the non-list variant. In this paper, we first improve the known result by proving that, for every integer $k \ge 4$, the problem remains PSPACE-complete even if an input graph is planar, bounded bandwidth, and of maximum degree three. We then give the first complexity hardness result for the non-list variant: for every integer $k \ge 5$, we prove that the non-list variant is PSPACE-complete even if an input graph is planar, of bandwidth linear in $k$, and of maximum degree $k$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hiroki Osawa (1 paper)
  2. Akira Suzuki (29 papers)
  3. Takehiro Ito (36 papers)
  4. Xiao Zhou (84 papers)
Citations (8)