Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Convergence of Moments for Approximating Processes and Applications to Surrogate Models (1804.10821v1)

Published 28 Apr 2018 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: We study critera for a pair $ ({ X_n } $, $ { Y_n }) $ of approximating processes which guarantee closeness of moments by generalizing known results for the special case that $ Y_n = Y $ for all $n$ and $ X_n $ converges to $Y$ in probability. This problem especially arises when working with surrogate models, e.g. to enrich observed data by simulated data, where the surrogates $Y_n$'s are constructed to justify that they approximate the $ X_n $'s. The results of this paper deal with sequences of random variables. Since this framework does not cover many applications where surrogate models such as deep neural networks are used to approximate more general stochastic processes, we extend the results to the more general framework of random fields of stochastic processes. This framework especially covers image data and sequences of images. We show that uniform integrability is sufficient, and this holds even for the case of processes provided they satisfy a weak stationarity condition.

Summary

We haven't generated a summary for this paper yet.