Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Bernstein-Bezier Bases for Tetrahedral Finite Elements (1804.10466v1)

Published 27 Apr 2018 in math.NA

Abstract: We present a new set of basis functions for H(curl)-conforming, H(div)-conforming, and L2 -conforming finite elements of arbitrary order on a tetrahedron. The basis functions are expressed in terms of Bernstein polynomials and augment the natural H1 -conforming Bernstein basis. The basis functions respect the differential operators, namely, the gradients of the high-order H1 -conforming Bernstein-Bezier basis functions form part of the H(curl)-conforming basis, and the curl of the high-order, non-gradients H(curl)-conforming basis functions form part of the H(div)-conforming basis, and the divergence of the high-order, non-curl H(div)-conforming basis functions form part of the L2-conforming basis. Procedures are given for the efficient computation of the mass and stiffness matrices with these basis functions without using quadrature rules for (piece-wise) constant coefficients on affine tetrahedra. Numerical results are presented to illustrate the use of the basis to approximate representative problems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.