Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Optimal energy-conserving discontinuous Galerkin methods for linear symmetric hyperbolic systems (1804.10307v1)

Published 26 Apr 2018 in math.NA

Abstract: We propose energy-conserving discontinuous Galerkin (DG) methods for symmetric linear hyperbolic systems on general unstructured meshes. Optimal a priori error estimates of order $k+1$ are obtained for the semi-discrete scheme in one dimension, and in multi-dimensions on Cartesian meshes when tensor-product polynomials of degree $k$ are used. A high-order energy-conserving Lax-Wendroff time discretization is also presented. Extensive numerical results in one dimension, and two dimensions on both rectangular and triangular meshes are presented to support the theoretical findings and to assess the new methods. One particular method (with the doubling of unknowns) is found to be optimally convergent on triangular meshes for all the examples considered in this paper. The method is also compared with the classical (dissipative) upwinding DG method and (conservative) DG method with a central flux. It is numerically observed for the new method to have a superior performance for long-time simulations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.