Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Covering and separation for logical fragments with modular predicates (1804.08883v5)

Published 24 Apr 2018 in cs.LO and cs.FL

Abstract: For every class $\mathscr{C}$ of word languages, one may associate a decision problem called $\mathscr{C}$-separation. Given two regular languages, it asks whether there exists a third language in $\mathscr{C}$ containing the first language, while being disjoint from the second one. Usually, finding an algorithm deciding $\mathscr{C}$-separation yields a deep insight on $\mathscr{C}$. We consider classes defined by fragments of first-order logic. Given such a fragment, one may often build a larger class by adding more predicates to its signature. In the paper, we investigate the operation of enriching signatures with modular predicates. Our main theorem is a generic transfer result for this construction. Informally, we show that when a logical fragment is equipped with a signature containing the successor predicate, separation for the stronger logic enriched with modular predicates reduces to separation for the original logic. This result actually applies to a more general decision problem, called the covering problem.

Citations (3)

Summary

We haven't generated a summary for this paper yet.