Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Transfer Theorem for the Separation Problem (1501.00569v1)

Published 3 Jan 2015 in cs.FL

Abstract: We investigate two problems for a class C of regular word languages. The C-membership problem asks for an algorithm to decide whether an input language belongs to C. The C-separation problem asks for an algorithm that, given as input two regular languages, decides whether there exists a third language in C containing the first language, while being disjoint from the second. These problems are considered as means to obtain a deep understanding of the class C. It is usual for such classes to be defined by logical formalisms. Logics are often built on top of each other, by adding new predicates. A natural construction is to enrich a logic with the successor relation. In this paper, we obtain simple self-contained proofs of two transfer results: we show that for suitable logically defined classes, the membership, resp. the separation problem for a class enriched with the successor relation reduces to the same problem for the original class. Our reductions work both for languages of finite words and infinite words. The proofs are mostly self-contained, and only require a basic background on regular languages. This paper therefore gives new, simple proofs of results that were considered as difficult, such as the decid- ability of the membership problem for the levels 1, 3/2, 2 and 5/2 of the dot-depth hierarchy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.