Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel and I/O-efficient Randomisation of Massive Networks using Global Curveball Trades (1804.08487v2)

Published 23 Apr 2018 in cs.DS

Abstract: Graph randomisation is a crucial task in the analysis and synthesis of networks. It is typically implemented as an edge switching process (ESMC) repeatedly swapping the nodes of random edge pairs while maintaining the degrees involved. Curveball is a novel approach that instead considers the whole neighbourhoods of randomly drawn node pairs. Its Markov chain converges to a uniform distribution, and experiments suggest that it requires less steps than the established ESMC. Since trades however are more expensive, we study Curveball's practical runtime by introducing the first efficient Curveball algorithms: the I/O-efficient EM-CB for simple undirected graphs and its internal memory pendant IM-CB. Further, we investigate global trades processing every node in a graph during a single super step, and show that undirected global trades converge to a uniform distribution and perform superior in practice. We then discuss EM-GCB and EM-PGCB for global trades and give experimental evidence that EM-PGCB achieves the quality of the state-of-the-art ESMC algorithm EM-ES nearly one order of magnitude faster.

Citations (12)

Summary

We haven't generated a summary for this paper yet.