Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparing the Switch and Curveball Markov Chains for Sampling Binary Matrices with Fixed Marginals (1709.07290v3)

Published 21 Sep 2017 in cs.DM

Abstract: The Curveball algorithm is a variation on well-known switch-based Markov chain approaches for uniformly sampling binary matrices with fixed row and column sums. Instead of a switch, the Curveball algorithm performs a so-called binomial trade in every iteration of the algorithm. Intuitively, this could lead to a better convergence rate for reaching the stationary (uniform) distribution in certain cases. Some experimental evidence for this has been given in the literature. In this note we give a spectral gap comparison between two switch-based chains and the Curveball chain. In particular, this comparison allows us to conclude that the Curveball Markov chain is rapidly mixing whenever one of the two switch chains is rapidly mixing. Our analysis directly extends to the case of sampling binary matrices with forbidden entries (under the assumption of irreducibility). This in particular captures the case of sampling simple directed graphs with given degrees. As a by-product of our analysis, we show that the switch Markov chain of the Kannan-Tetali-Vempala conjecture only has non-negative eigenvalues if the sampled binary matrices have at least three columns. This shows that the Markov chain does not have to be made lazy, which is of independent interest. We also obtain an improved bound on the smallest eigenvalue for the switch Markov chain studied by Greenhill for uniformly sampling simple directed regular graphs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.