Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of large DNA methylation datasets for identifying cancer drivers (1804.04839v1)

Published 13 Apr 2018 in q-bio.GN and cs.CE

Abstract: DNA methylation is a well-studied genetic modification crucial to regulate the functioning of the genome. Its alterations play an important role in tumorigenesis and tumor-suppression. Thus, studying DNA methylation data may help biomarker discovery in cancer. Since public data on DNA methylation become abundant, and considering the high number of methylated sites (features) present in the genome, it is important to have a method for efficiently processing such large datasets. Relying on big data technologies, we propose BIGBIOCL an algorithm that can apply supervised classification methods to datasets with hundreds of thousands of features. It is designed for the extraction of alternative and equivalent classification models through iterative deletion of selected features. We run experiments on DNA methylation datasets extracted from The Cancer Genome Atlas, focusing on three tumor types: breast, kidney, and thyroid carcinomas. We perform classifications extracting several methylated sites and their associated genes with accurate performance. Results suggest that BIGBIOCL can perform hundreds of classification iterations on hundreds of thousands of features in few hours. Moreover, we compare the performance of our method with other state-of-the-art classifiers and with a wide-spread DNA methylation analysis method based on network analysis. Finally, we are able to efficiently compute multiple alternative classification models and extract, from DNA-methylation large datasets, a set of candidate genes to be further investigated to determine their active role in cancer. BIGBIOCL, results of experiments, and a guide to carry on new experiments are freely available on GitHub.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Fabrizio Celli (1 paper)
  2. Fabio Cumbo (2 papers)
  3. Emanuel Weitschek (1 paper)
Citations (41)

Summary

We haven't generated a summary for this paper yet.