Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decomposition and Completion of Sum-of-Squares Matrices (1804.02711v1)

Published 8 Apr 2018 in math.OC and cs.SY

Abstract: This paper introduces a notion of decomposition and completion of sum-of-squares (SOS) matrices. We show that a subset of sparse SOS matrices with chordal sparsity patterns can be equivalently decomposed into a sum of multiple SOS matrices that are nonzero only on a principal submatrix. Also, the completion of an SOS matrix is equivalent to a set of SOS conditions on its principal submatrices and a consistency condition on the Gram representation of the principal submatrices. These results are partial extensions of chordal decomposition and completion of scalar matrices to matrices with polynomial entries. We apply the SOS decomposition result to exploit sparsity in matrix-valued SOS programs. Numerical results demonstrate the high potential of this approach for solving large-scale sparse matrix-valued SOS programs.

Citations (8)

Summary

We haven't generated a summary for this paper yet.