Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Computing Stieltjes constants using complex integration (1804.01679v3)

Published 5 Apr 2018 in math.CA and cs.NA

Abstract: The generalized Stieltjes constants $\gamma_n(v)$ are, up to a simple scaling factor, the Laurent series coefficients of the Hurwitz zeta function $\zeta(s,v)$ about its unique pole $s = 1$. In this work, we devise an efficient algorithm to compute these constants to arbitrary precision with rigorous error bounds, for the first time achieving this with low complexity with respect to the order~$n$. Our computations are based on an integral representation with a hyperbolic kernel that decays exponentially fast. The algorithm consists of locating an approximate steepest descent contour and then evaluating the integral numerically in ball arithmetic using the Petras algorithm with a Taylor expansion for bounds near the saddle point. An implementation is provided in the Arb library. We can, for example, compute $\gamma_n(1)$ to 1000 digits in a minute for any $n$ up to $n=10{100}$. We also provide other interesting integral representations for $\gamma_n(v)$, $\zeta(s)$, $\zeta(s,v)$, some polygamma functions and the Lerch transcendent.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.